Page tree

Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
HTML
<script>
  AJS.toInit(function(){
    if (AJS.params.remoteUser == ''){
      AJS.$('#header').hide();
      AJS.$('#main-header').hide();
    }
  });
</script>
<iframe id="topheader" src="https://www.targit.com/layouts/targit13/doc_confluence.aspx" scrolling="no" style="width:100%;height:467px;overflow:hidden;scrolling:no;"></iframe>

 Back


Data Discovery Course

This course will guide you through the TARGIT Data Discovery component in TARGIT and enables you to perform ad-hoc analysis.

Running Data Discovery the first time

Requirements

The following requirements must be present for successful installation  enables an end-user to consume data from a wide variety of data sources and combine them with other data without knowing about data types and complicated query languages. We call these combinations for cubes. 

TARGIT Data Discovery is not meant to be a replacement for a traditional BI solution, but rather be the add-on that gives business analysts and other user types with basic understanding of data structures a tool to instantly deploy company-wide solutions in a collaborative spirit.

The engine of the TARGIT Data Discovery module

    • TARGIT Decision Suite 2015 or newer
    • A newer browser (IE10 and newer)
    • A valid license that includes the Data Discovery module
    • .NET Framework 4.5 or newer
    • Windows Server 2008 SP2 and newer
    • Enabled Windows Features for:
      • WCF Activation over port and http
      • IIS ASP.NET 4.5

Data Discovery Administrator

At least one user needs to be appointed Data Discovery Administrator. This is done through the Rights settings in the TARGIT Management client.

HTML
<div style="margin-left: 30.0px">

<iframe src="https://player.vimeo.com/video/318199635" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>

</div>

Pinned Folders

The predominant feature of the Start page is the Pinned folders.

Pinned folders offer you an easy-to-overview thumbnail presentation of your preferred analyses, reports and dashboards. Click any of these thumbnails to open the document.

Add other folders to your Pinned folders for easy accessis a service called TARGIT Data Service. The TARGIT Data Service is an in memory engine designed to work with datasets of millions of rows and must be installed on the same server hosting the ANTserver component.

TARGIT Data Service will work with up to two million rows of data out of the box, but with the addition of the Data Discovery license module to the TARGIT solution, it can exceed the two million rows limit – limited only by memory.

Running Data Discovery the first time

Requirements

The following requirements must be present for successful installation of the TARGIT Data Discovery module: 

    • TARGIT Decision Suite 2015 or newer
    • A newer browser (IE10 and newer)
    • A valid license that includes the Data Discovery module
    • .NET Framework 4.5 or newer
    • Windows Server 2008 SP2 and newer
    • Enabled Windows Features for:
      • WCF Activation over port and http
      • IIS ASP.NET 4.5

Data Discovery Administrator

At least one user needs to be appointed Data Discovery Administrator. This is done through the Rights settings in the TARGIT Management client.


HTML
<div style="margin-left: 30.0px">

<iframe src="https://player.vimeo.com/video/319483529318199635" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>

</div>
Document Search

Add single file

The 'Search' option is especially useful when you need to look up a specific document among a large amount of documents spread across multiple folders and subfolders“Add file” option of TARGIT Data Discovery is the option we would like to exploit as part of this lesson. This is where you can easily add ad-hoc data – typically single Excel files or single CSV files – and instantly use the TARGIT client to analyze data from those files.


HTML
<div style="margin-left: 30.0px">
<iframe src="https://player.vimeo.com/video/321223374318212695" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
</div>

Criteria - filtering your data

Your analysis may have been designed with some pre-selected dimensions for applying criteria or filters to the data. These dimensions will be available for the 'Criteria bar' on top of your analysis.

HTML<div style="margin-left: 30.0px"> <iframe src="https://player.vimeo.com/video/321225989?app_id=122963" noborder="0"

Dimensions and Measures folders 

When you create cubes with TARGIT Data Discovery, you will notice that all columns of the source file are categorized as either measures or dimensions or both.

Furthermore, these measures and dimensions are arranged into a number of Display folders where eg. a measure occur in a sum folder, an avg folder, a max folder etc. Each of these measure folders represent different aggregation types. The idea is, that you should be able to pick the proper aggregation type for each measure - eg. the appropriate aggregation type for Contribution could be sum, while for Contribution Margin it could be avg.


HTML
<div style="margin-left: 30.0px">
<iframe src="https://player.vimeo.com/video/318227445" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
</div>

Drill Down Criteria

Drill down criteria is a unique and extremely useful feature of the TARGIT client. You apply a Drill down criteria when you click a specific dimension member in one of your objects. Eg. if you click a specific salesperson in one of you crosstabs, then, that salesperson will work as a filter - as a drill down criteria - upon all the other crosstabs and graphs in your analysis, thereby reflecting data for that specific salesperson.

HTML<div style

Updating single files

Files that have been uploaded through the Add file option, needs to be uploaded again to reflect updated data. You can add new data to the file or update existing data - but you should not change the structure nor the name of the file.


HTML
<div style="margin-left: 30.0px">
<iframe src="https://player.vimeo.com/video/321229414318951659?app_id=122963" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
</div>

Object related functions

When hovering or right clicking an object in the Anywhere client you will see a number of object related options.

  • Information / Explanation - Useful for knowing which criteria currently applies to an object.
  • Show Data / Chart - will toggle between Chart or Crosstab presentation of data.
  • Multi select - enables selection of multiple dimension members for Drill down selections (especially useful on mobile platforms).
  • Drill out - removes any Drill down selections from the object.
  • Export to Excel - export the crosstab data to Excel. If performed on a Chart, the underlying crosstab will be exported.
  • Collapse level / Expand level - If the dimension in an object is a hierarchical dimension, you can use these options to quickly collapse to a previous level or expand all nodes to the next level.
  • Maximize / Restore - you can maximize a single object to "full screen", and likewise restore it back to its original position.
  • Action / Drillthrough - If your data has been set
    up with Actions or Drillthroughs, these options will be available. A Drillthrough is normally set up to provide further details - eg. individual invoices - behind a summarized number

    Data Source Column types

    The Data Discovery tool will automatically detect data types of the individual columns in the source file. Only columns containing numeric data will be treated as Measures, while all other columns will be treated as dimensions. Furthermore, date columns will be detected and treated specifically as time dimensions.

    However, sometimes you will want to fine tune this detection.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/318955837" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Attribute settings

    By default, Data Discovery will produce each measure with an abundance of aggregation types – sum, avg, cnt etc. This is just to ensure that all options are available to the end-user, as Data Discovery is not able to make a qualified decision on e.g. one proper aggregation type. You may however lessen the options by making this qualification yourself.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/321232601318958532" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Dynamic criteria

    Another unique feature of TARGIT is the ability to work with Dynamic criteria on your time dimensions. With Dynamic criteria you can apply criteria to your analyses, such as Year to date, Previous month, Yesterday etc. Eg., if you have an analysis with a Previous month dynamic criteria that you open in November, it will automatically show data for October; and when you later open the same analysis in December, it will automatically show data for November.

    Please note that Dynamic Criteria must be enabled on the saved document before you can use it in the Anywhere client.

    Order and Member Property

    You can apply these two settings to any attribute in your Data Discovery cube.

    The Order setting is an option to have an attribute sorted by a different attribute. A common example is to display Item names, but to have the list sorted by Item numbers.

    The Member property setting is an option to display one-to-one correlated data in a crosstab without putting additional stress on the server. A common example is to display Adress, Phone number and Email next to a Customer dimension.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/321236095318966375" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Bookmarks

    The Anywhere client is designed as a pure Consumer client - i.e. you cannot create or save documents from the Anywhere client. You can in fact only work with existing analyses from the Anywhere client.

    Once you have opened an existing analysis, you can of course still apply personal criteria to that analysis. The Bookmark function offers an opportunity to save these personal criteria together with the analysis - so next time you open the Bookmark, it will automatically apply the criteria to the saved analysis.

    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/321243366" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Share your findings

    When working with an analysis, you may discover findings that you would like to share with one of your colleagues. The Anywhere client can do this fairly simple by clicking the Share button.

    Combining data sources

    TARGIT Data Discovery may of course also work with multiple, related data sources. The data sources do not need to come from the same source or to be of the same type or same format – in fact, as long as TARGIT Data Discovery is able to read the data, these data can be mashed up to fulfill any analytical needs.

    To perform a successful data mashup, you will still need to be able to relate data from different sources to each other. This relation requires common keys across the data sources to be mashed up.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/318973091" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Formats: String operations

    TARGIT Data Discovery comes with an extensive library of functions for extracting, modifying, cleansing and enriching data from your Data Sources.

    This is something you may often need, especially when working with data through web services, as sometimes the format of these data may initially be very different from what you require.

    If you are familiar with the functions in Excel, it will not take you long to learn the more than 100 available functions in TARGIT Data Discovery. The two sets of functions are similar or almost identical.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/204017235" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Formats: Unpivot table

    If possible, we would like to have data delivered in the “rows equals transactions and columns equals dimension attributes or measures” fashion, but sometimes this is not the case.

    Especially when working with data coming from Excel sheets, you may experience data in the pivoted format, where dimension values have been added to both axes to form a grid of transactions rather than just a list of transactions.

    Before such data can be useful to TARGIT Data Discovery, we will need to unpivot the data.


    HTML
    <div style="margin-left: 30.0px">
    
    <iframe src="https://player.vimeo.com/video/318992270" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    
    </div>

    Sharing cubes and data sources

    An important thing to know about the Data Sources and the Cubes you create in TARGIT Data Discovery is, that, by default, the things you create are available only to yourself!

    In other words, even though many people within an organization are working on the same central TARGIT Data Discovery installation, their data are by default not shared. We think this is the best way of handling data governance: That, by default, you do not need to fear that the wrong people might accidently be able to see your uploaded data.

    Only when you actively want to or need to share your data with other people within your organization, you can of course do that – and only with the individuals chosen by you.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/204147162" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Example: Combining external data with Data Warehouse data 

    A very common request among TARGIT users is to be able to mash up external ad-hoc data with data in the Enterprise Data Warehouse – without having to involve the Enterprise Data Warehouse ETL and Data Modelling procedures.

    While this, on paper, may seem like a simple task, it is in fact not possible to simply extract all Enterprise Data Warehouse data as a data source for TARGIT Data Discovery.

    Instead, you will need to define a specific data extract from the Enterprise Data Warehouse needed for mash up with the external data.

    When you create a TARGIT analysis upon data from your Enterprise Data Warehouse, you actually make small well-defined data extracts for each object in the analysis.

    In other words, if you define a crosstab in a TARGIT analysis to show the necessary Enterprise Data Warehouse data for your data mash up, you can then use this TARGIT analysis as a data source in TARIT Data Discovery.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/204328045" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Example: Weather data

    The Weather plugin is just one of many online data sources from where you may extract "big data". Depending on your business, weather may actually have an impact your KPIs. To examine this, to find any correlation between weather data and eg. sales data, simply add Weather data as a data source.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/204353797?app_id=122963" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>

    Example: Use R script to merge multiple files into one data source

    To execute R scripts it is required that the open source ‘R’ programming language is installed. Go to the R homepage at https://www.r-project.org/ or go directly to one of the mirrored download pages, e.g. http://cran.uib.no/.

    R is in fact a powerful statistical programming language that allows you to run scripts for extracting data sets for statistical purposes. The purpose of this lesson is not to teach you details on how to use R – many online resources are available to give you a head start on that.

    In this lesson you will simply learn how to work with one specific and useful script that allows you to merge data of multiple files into one data source.


    HTML
    <div style="margin-left: 30.0px">
    <iframe src="https://player.vimeo.com/video/283420818204504370" noborder="0" width="800" height="450" allow="fullscreen" scrolling="yes" seamless></iframe>
    </div>
    HTML
    <style type="text/css">
          #title-text { display: none;} 
          #breadcrumbs, #footer, #likes-and-labels-container, #comments-section { display:none; }	
    
    div.theme-default .ia-splitter #main {
        margin-left: 0px;
    }
    .ia-fixed-sidebar, .ia-splitter-left {
        display: none;
    }
    div#main {
        margin-left: 0px !important;
    }
    div#footer {
      margin-left: 0px !important;
    }
    
    .columnLayout.two-equal
    {
    padding-left: 20px;
    padding-right: 20px
    }
    
    #main #content
    {
    padding-right:0px;
    }
    
    div#main
    {
    padding:0px;
    }
    #page
    {
    overflow-x: hidden;
    }
    iframe#topheader
    {
    border:0px;
    }
    .contentLayout2 .columnLayout
    {
    margin-bottom:0px;
    }
    
    #workflow-page-message
    {
    margin-bottom: 0px;
    }
       </style>
    <script src="//cep.targit.com/bundle/beacon"></script>
    
    <div class="Footer" style="background-color: #1d252d;width:100%;">
        <div class="loop" style="padding-top:69px;padding-bottom:72px;text-align:center;">
            <img src="https://targitmedia.azureedge.net/Resources/MainSite/Images/footerloop.png" style="margin-bottom:32px;">
            <div style="font-size:24px;line-height:32px;letter-spacing:0.6px;color:#fff;">
                Courage to Act
            </div>
        </div>
        <div style="width:100%;background-color:#121a23;">
            <div style="width:1080px;margin:auto;padding-bottom:20px;padding-top:20px;">
                <div style="float:left;font-size:13px;color:#8a9298;">
                    <div style="margin-top:5px;display:inline-block;padding-right:30px;color:#8a9298;">
                        © 2019 TARGIT. All Rights Reserved.
                    </div>
                    <a style="margin-top:5px;display:inline-block;text-decoration:none!important;color:inherit;font-size:13px;" href="https://www.targit.com/en/personal-data-policy">Personal Data Policy</a>
                </div>
                <div style="float:right;">
                    <a style="vertical-align:super;font-size:13px;letter-spacing:0.6px;margin-right:36px;color:#fff;text-decoration:none!important;text-transform:uppercase" href="https://www.targit.com/en/meet-targit/meet-the-targit-team/contact-targit">CONTACT</a>
                    <a style="vertical-align:super;font-size:13px;letter-spacing:0.6px;margin-right:36px;color:#fff;text-decoration:none!important;text-transform:uppercase"  href="https://www.targit.com/en/meet-targit/targit-news/news-list">PRESS</a>
                    <a style="vertical-align:super;font-size:13px;letter-spacing:0.6px;margin-right:36px;color:#fff;text-decoration:none!important;text-transform:uppercase"  href="https://www.targit.com/en/meet-targit/targit-career/jobs">CAREERS</a>
                    <a style="margin-right: 36px !important;text-decoration: none !important;color: inherit;" href="https://twitter.com/targit" target="_blank"><img src="https://targitmedia.azureedge.net/Resources/MainSite/Images/twitterfooter.png"></a>
                    <a style="margin-right: 36px !important;text-decoration: none !important;color: inherit;" href="https://www.linkedin.com/company/targit" target="_blank"><img src="https://targitmedia.azureedge.net/Resources/MainSite/Images/linkedinfooter.png"></a>
                    <a style="margin-right: 36px !important;text-decoration: none !important;color: inherit;" href="https://www.facebook.com/TARGIT.BI.Suite" target="_blank"><img src="https://targitmedia.azureedge.net/Resources/MainSite/Images/fbookfooter.png"></a>
                </div>
                <div style="float:none;clear:both;"></div>
            </div>
        </div>
    </div>