OpenlID

/ﬂ\ Back

OpenlID user authentication (TARGIT 2019 Update 3 feature)

TARGIT can now delegate user authentication to external identity providers such as Azure, ADFS, Google etc., opening up for many new
features supplied by these providers - including two-factor authentication.

OpenlD is increasingly becoming a standard for user authentication. Organizations that already embrace this technology will be delighted to
learn that TARGIT now also supports this.

Disclaimer: Administrators working with setting TARGIT up for OpenlID user authentication will need to know in advance how to work with the
interface of the external identity provider of choice.

Overview

When you add a new external identity provider to your TARGIT solution, these are the general steps to take:

a.
b.

C.

TARGIT needs to be registered as an Application with the external identity provider.

As part of the application registration process, you will get the Client ID and the Client Secret that are necessary for the TARGIT
server to communicate with the external identity provider.

When the application registration is completed, the TARGIT server will also need to know about the Authorization Endpoint, the Toke
n Endpoint and the Scope. TARGIT offers OpenID Discovery, which, with a single key, will automatically insert all of these
properties. Alternatively, copy these properties — one by one — from the external Identity provider.

. The external identity provider will in return need to know the URIs of the Anywhere component and the TARGIT Server. These URIs

are available as soon as you have set up the external identity provider in TARGIT Management.

. The AD groups from the external identity provider must be mapped with the Windows AD groups in the domain where the TARGIT

server is installed. The mapping is done via a script that is connected to the added identity provider in the TARGIT Management
client.

Requirements

Before adding an external identity provider, make sure that Public URLs for the TARGIT Server and the Anywhere component are set up
correctly. This is done in the TARGIT Management client, in Setup / Back-end:

https://confluence.targit.com/display/2019doc/2019+Documentation
https://confluence.targit.com/display/2019doc/2019+Documentation

@ TARGIT Management - Back-end Properties

Logging
[Log Analysis requests to awdliary database

Leg steryboard requests

L L] L
Kegp o ta for] | mantng

Online Licenze Update
Enabled

Hour of the day: 23:00- 00:00 v|
Critena request cache
Cache size limit (Mb):
Minimum free dick space (Mb):
File count Emit:

Idle file expiration (days):

Multiple logins
[allow multiple simultanecus logins inte Management

Public URLs
Anywhere |hltps=fﬂocalhur=t.-fm:,wlme{ | Test URL
TARGIT Server |https:/localhost 1301 | TesturL

[oc]| cance |

Note: Replace “localhost” with the correct server name or IP address within your organization. Also note that the Anywhere component (on the
1IS) and the TARGIT server are not necessarily installed on the same server.

Adding a new Identity Provider

The OpenID authentication method has become a new option in the TARGIT Management client's Security settings:

{E} localhost - TARGIT Management - o *

Security

Manage user access

@ Security modek Windows Security

P [3lchange security model

% ions Pre-shared key for Anywhere signed logon

F‘ License [3)Get pre-shared key

| A Logins [P livalidate existing and creati new key
@ Language 551 pertificate

E Launich 551 Toolkit

|.ﬂ Export Folders Can only be started locally

& security ' Extemal identity providers

o mighes

A Roles

(%) Close

The Identity Providers dialog lets you add one or more identity providers to the list.

Styling
lan | URL

Name

Activg Mame |v] Script Empty Mew &
0 dertatyProviderE dstar x ‘_,_,-'-"’_fdd
P
Endpints
Fetch from OpendD Discovery
Authonzation Endpoint
Token Endpaint
Active
e}
Client ID
Chent Secret
Scope
Authenization Parameters Key Value
l l Manage Seript
Close

A

Cancel

When you add a new Identity Provider, you must fill in its’ settings in the IdentityProviderEditor dialog:

© Fetch from OpenlID Discovery: This is an option to fill some of the other fields automatically. E.g. in an Azure Active Directory, App
Registrations you will have an Endpoint called OpenID connect metadata document. This Endpoint can be copied and pasted and
used to fetch some of the other settings (or they can be copied/pasted individually):

Authorization Endpoint

Token Endpoint

Scope

Authorization Parameters

Active: You have an option to disable (= not active) an identity provider. This will prevent end-users from using that
particular login method.

ID: The ID is a name/ID you give to this Identity Provider setting. The ID will become part of the URI strings.

Client ID: On the external identity provider, TARGIT is registered as an application with a Client ID (sometimes called an
Application ID.

Client Secret: The Secret (i.e. password) for the registered client is revealed during the application registration. Important:
On Azure (and potentially other external identity providers) it is not possible to see the Secret after registration is completed.

Example on a filled in Identity Provider for Azure OpenID:

{24 IdentityProviderEditor »

Endpoints

| Fetch from OpeniD Discovery |

Authorization Endpoint https://legin.microsoftonline.com/3bBEE5TF-EeB5-4f9¢-1

Token Endpoint https/foginmicrosoftonline.com/IbEBE5TT-6aB5-4f0c-1

Active 1l

I Azure OpenlD

Client 1D 6611af74-Bea1-4723-0208-8aTcc 16377 1e
Client Secrat

Scape

openid prafile email offline_access

Authorization Parametsrs i Key Value

Styling

ken URL ¥ | | httpsy//portal azure.com/faviconica A

Name | Azure OpenlD Login

o Styling, Icon and name: You can upload or point to an image that you want to associate with this Identity Provider, and you can
give it a name.

The icon and the name is what the end-user will see when logging on to a TARGIT client.

TARGIT

Choose logen methed
A Azure OpenlD Login

Use WFMVIRFLIABRUAP\Administrator

Use user name and password

Scripts

An Identity Provider's associated script is essential for, at least, the mapping between the external identity provider's AD users and groups and
the internal AD users and groups.

You will need to know the SIDs from both sides.

Example on a script related to an Azure OpenlD identity provider:

=} Manage Script - o o

P Run [Defsule
1 psyne function{idToken) {
F var dict = {
#f Windows local groups
“"belaaSad-pbe5-48e5-al6a-5F20efFEB1137:
EdSHed- Sc-boch-IEadécIc@2be":
“e53cfETh- 4A8ef-p432-501ceas18203"; °

I9B52-10327, /f Win.Sec. Core Development
A52-10387, ff Win.Sec. Marketing
239052-18317, /f Win.5ec. Sales

h
var groups = ldToken[“groups™].map(g =» dict[gl);

11 return |
12 user_name: idToken["email™],

1 user_ld: 1-"+idToken[“sub™],

14 J/user_groups: [lockup.getGrouplD{“Everyone™), “5-1-5-12-5447]
-

1

UBEF_Eroups: groups

T}

Raady

Tokens Cutputs

Access Token: Username:
UserlDr

Redresh Token: Groups:

| Testlogin |

Use the “Test Login” option to login as one of the authenticated users. The information you get in return can be used for filling parts of your
script, e.g. a group SID.

Furthermore, once you have done a Test Login and potentially modified your script, you can then “Run” the script. This will do the mapping and,
in Outputs, give you additional information about the user, based on the internal AD.

Now that this user has been mapped from an external identity provider group to an internal AD group (and assuming that internal AD groups
already have been added to TARGIT roles), you can then Look up user permissions to get an overview of the user’s effective permissions with
regard to access to documents folders, databases, forced criteria etc.

4 Manage Script - o o

P Fun [Defult
1 async function{idToken) {
2 var dict = {
3 #f Windows local groups
4 “belaaSed-abe5-48e5-a16a-5F28efFEB113%: "5-1-5-21- 506140403 -665274247-458039052-1932%, // Win.Sec. Core Developmsent
5 “916dS8ed-2628-4cSc-boch-BEadEcBc@2bO" s "5-1-5-21-B06 140400 - 665274247 - 4500090521030, /J Win.Zec. Marketing
6 “eS3cfETh-134b-48ef-2432-501ceas 1820377 "5-1-5-21-B06140403- 665274247 -458039052-10317, /F Win.S5ec. Sales
7 ki
8
L] var groups = ldToken[“groups™).map(g =» dict[gl);
19
11 return |
12 user_name: idToken["email~],
13 u;gr-idz 5-1-"+idToken "sub™],
14 Jffuser_groups: [lockup.getGrouplD({~Everyone™), “S-1-5-32-5447]
15 USEF_groups: groups
16 ¥
17 }
Successfunl
Tekens Cutputs

Acgess Tokene | ey)0eNACUKY 1QILC Jub2SiZS 6inM X gwTWVAZONISOpOenhyeVIDSmVYMnpLLWISQUASd Username: tasgitoid 1 Ggmail.com
e Tk Userilr TARGITTestlabhS- 1 -2n_amhnd kS g DIELAPSSigPhs

Refresh Token: | DA0ABAAAAAAARDwIqdLVToOpAdionz SnulmyF BOORSQ) rezfin Tal ST hwe T 55afb2 e 171 Groups:

ey Vadue W06, OPENID, 3\ Core Development [5-1-5-21-505140403-8¢

sud | BE118F7Y-Benl-4723-0208-BaTec1637T e . Everyone (5-1-1-0)
i3 | hitpe/login microsafonline comm IBBSE5TF-GeB5-L4Mc -bBcd-EReaHB 222 D)
iat 1547420753

nbf | 1567420753

exp | 1367424653

email | tsrgitoid | Ggmad.com

groups|[
“pelaalat-abel-20e5.0 100 S2B4HEE1Y"
! v »
ettegn
5w]

Alternatively, if your internal AD does not hold the corresponding groups required for mapping to the groups of the identity provider's AD, you
can manually add group information in the TARGIT Management client.

E.g., if you have some identity provider users that are members of an identity provider group, and you want that group's members to log on to
TARGIT with specific rights and specific roles, you can simply add a new manual group as a member to the Rights and Roles definitions.

{5% TARGIT Management - Rights Properties O *

MName: |Designers |

Members License Rights

A& BUILTINVAdministrators (Administrators)
AL NT AUTHORITY\Godkendte brugere (Godkendte brugere)

Manual group
Manual user [}

2% Add manual group - O X
D |salesDepot |
Name |Sales Department US |

ok | | Concel

Even if you do have the corresponding groups in your internal AD, it may be easier to use the IDs from the manually created groups, rather
than trying to retrieve IDs from your internal AD.

Identity Provider Management

For an existing identity provider, you may:

© Edit the identity provider.

© Delete the identity provider.

o Test the identity provider. (Login with a user already set up on the external identity provider.) A successful test indicates that the
TARGIT server and the external identity provider were able to exchange authentication information as expected.

o See Redirect URIs. These are the two redirect URIs (for TARGIT server and Anywhere) that must be fed back to the external
identity provider’s list of authenticated URIs.

-} Idtnhw Providers ne
Actioe Mame D Script Empty M a .
et Azure OpeniD Login Azure OpeniD MNe

Edit
Delete
Test

See Hedirect LRI

Manage Script

| Close |

Embedding Provider ID with Anywhere URL

In an OpenID environment, you can prevent Anywhere users from choosing login method at first login. This is done by inserting the Provider ID
in the Anywhere URL.

In this example, Google authentication has been used.
https://myTargitServer.com/anywhere/embed.html?providerID=Google##SalesforceHome
Please notice that "providerID" is case sensitive - "providerld" would not work.

The "Google" value is the ID of an Identity Provider that must be set up in the TARGIT Management client:

https://mytargitserver.com/anywhere/embed.html?providerID=AzureAD##SalesforceHome

4% Identity Provider Editor X

Endpoints

| Fetch from OpenlD Discovery |

Authorization Endpoint | https:;//accounts.google.com/ofoauth2/v2/auth

Token Endpaint https://oauth2.googleapis.com/token
Active
D Google

P D W e o Y

Appendix — solution description, technical

The solution is based on OpenlD Connect, where the user's identity is encoded in a secure JSON Web Token (JWT), called an ID token,
based on the standard OAuth 2.0 flow.

The ID token resembles the concept of an identity card, in a standard JSON Web Token (JWT) format, signed by the Identity Provider. An ID
token has a limited lifetime (e.g. 30 minutes), so a Refresh token is also provided that can be used to query for a new ID token. The Refresh
Token will be necessary for e.g. running scheduled jobs, because we "simulate" a user login.

Authentication will take place at the Identity Provider in two steps.

First step is to request an Authorization Code from the Identity Provider, for that the TARGIT client will use a trusted agent (browser)
separate from the TARGIT application. The browser (standard system browser) will handle the dialogue that send the End-User to the chosen Id
entity Provider.

At the Identity Provider, the End-User will typically be authenticated by checking if they have a valid session (established by a browser
cookie), and in the absence of that, by prompting the user to login. After that the user will typically be asked whether they agree to sign into
TARGIT.

The TARGIT client will pass the Authorization Code to the TARGIT Server which in step two will do a “back-end” authorization against the Ide
ntity Provider, and in exchange for the Authorization Code receive an ID token and the Refresh token. The ID token will be security
validated by TARGIT

Functionality TARGIT Management:

In TARGIT Management there will be added an additional security model “OpenID”.

In the “OpenID” security model you will be able to specify/“add” which Identity Provider that you want to trust. For custom Identity Provider yo
u will be able to define a URL with the address of the custom Identity Provider and request parameters in the URI query.

To integrate OpenlD into our rights/role-based security model, it should be possible to define certain rules on each right/role that determine if
the right/role will be active for a given user. These rules could be something like: if the value of claim x equals y, then this right/role should be
active. The administrator can then create several rights/roles that defines what each user can do - based on the contents of their ID token.
Functionality TARGIT Client:

When an end-user log into TARGIT, the TARGIT Client should be responsible for launching the browser to initiate the OpenID connect login.
When an Authorization Code is received, it should be handed to the TARGIT Server where the actual token handling takes place.

Functionality TARGIT Server:
The TARGIT Server will be the only one knowing the client secret, therefore the actual handling of the ID token and Refresh Token will take

place here. Each right and role will be checked to see if any of the OpenlD rules are met. After rights and roles have been determined, we will
issue our own security token to the TARGIT Client to be used internally.

Appendix — example Azure App Registration

In this example, you already have an Azure portal account and your Azure AD is already set up with a number of users and groups.

Azure:

o Qo

TARGIT:

-~ Do OTQ

Azure:

. Log on to your Azure portal, e.g. http://portal.azure.com
. Go to Azure Active Directory
. Go to App Registrations

i. Add a New registration
i. Apply a proper name (can be changed later) and Register

i. Copy and store the Application (client) ID. You will need this later.

. Go to Certificates and Secrets

i. Add a New client secret. Copy and store the client secret — you will not be able to retrieve it later.
ii. Goto APl permissions
iii. Add a permission:
i. Microsoft Graph
ii. Delegated permission

iii. Checkmark Group.Read.All

iv. Click the Add permissions button at bottom.

. Go to Manifest

i. Change groupMembershipClaims value to “All” (notice double quotation marks):

i. "groupMembershipClaims": "All",

. Go to Overview, Endpoints

i. Copy to clipboard: OpenlID Connect metadata document

. Create a New Identity Provider
. Click "Fetch from OpenID Discoverer”. This should automatically insert the copied URL.

i. Click “Fetch”. This should automatically fill in
i. Authorization Endpoint
ii. Token Endpoint

iii. Scope

. Enable “Active”

. Provide an ID of your choice, e.g. “CompanyAzurelD”

. Paste in the previously stored Client ID and Client Secret.

. Setup Styling Icon and Name of your choice.

. Save the Identity Provider setup.

. In the Identity Provider list, select the recently created provider.

i. Click “See Redirect URIs”

. Go to Authentication

i. Paste in the two Redirect URIs as two separate entries — Type: Web.

http://portal.azure.com/

	OpenID

